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Abstract

Large vision-language models (LVLMs) demonstrate re-
markable capabilities in multimodal tasks but are prone to
misinterpreting visual inputs, often resulting in hallucina-
tions and unreliable outputs. To address these challenges,
we propose DROPOUT DECODING, a novel inference-time
approach that quantifies the uncertainty of visual tokens
and selectively masks uncertain tokens to improve decod-
ing. Our method measures the uncertainty of each visual
token by projecting it onto the text space and decomposing
it into aleatoric and epistemic components. Specifically, we
focus on epistemic uncertainty, which captures perception-
related errors more effectively. Inspired by dropout regu-
larization, we introduce uncertainty-guided token dropout,
which applies the dropout principle to input visual tokens
instead of model parameters, and during inference rather
than training. By aggregating predictions from an ensem-
ble of masked decoding contexts, DROPOUT DECODING
robustly mitigates errors arising from visual token misinter-
pretations. Evaluations on benchmarks including CHAIR,
THRONE, and MMBench demonstrate that DROPOUT DE-
CODING significantly reduces object hallucinations (OH)
and enhances both reliability and quality of LVLM outputs
across diverse visual contexts. Code is released at https:
//github.com/kigb/DropoutDecoding.

1. Introduction

Recent advancements in large vision-language models
(LVLMs) have demonstrated impressive capabilities [11,
15, 17, 54, 59, 62, 66], in tasks such as image caption-
ing [58], visual question answering (VQA) [1, 22, 29, 61],
multimodal reasoning [6, 37, 39, 40, 63] and so on. How-
ever, LVLMs still face challenges in accurately perceiv-
ing and interpreting visual inputs, leading to inaccurate

*Work was done during Yixiong Fang and Ziran Yang’s remote in-
ternship at Stony Brook University. Correspondence to {kfangyixiong,
ziranyang0}@gmail.com.

outputs and hallucinations [35]. These issues often stem
from LVLMs misrepresenting key image elements or over-
looking critical details, compromising the reliability of
their outputs in tasks demanding precise visual understand-
ing [4, 5, 16, 57].

In practice, LVLMs typically process visual inputs to-
ken by token, which we refer to as visual tokens.1 This
can fall short in effectively focusing on the most informa-
tive parts of the visual context. While attention mechanisms
are designed to prioritize relevant information, they are not
always perfect [46, 52], especially when the inputs are com-
plex or ambiguous for the model, or in other words, of high
uncertainty. Existing methods to address these challenges
in the training stage often involve fine-tuning on specific
tasks [33, 34, 49, 56], or using additional supervision sig-
nals especially at lower level to guide the model [7, 55].
However, these approaches are resource-intensive and not
easily extensible to new tasks. Alternative inference-time
strategies, such as attention-based or logits-based mecha-
nisms on decoding correction [4, 21, 45, 51, 60], attempt
to identify important regions in the input without additional
training, but they typically rely on heuristic design choices
and largely increase inference cost. Therefore, enhancing
the trustworthiness of LVLMs and reducing hallucinations
require more principled methods that can more effectively
emphasize the most informative parts of the visual input.

To address this challenge, we propose a novel approach
that quantifies uncertainty in visual token contexts and re-
moves uncertain tokens, both directly at inference time to
improve the reliability of LVLM outputs. Inspired by tradi-
tional dropout [47] techniques—typically applied to model
parameters but difficult to implement directly in pretrained
LVLMs [13, 24]—we introduce token dropout, which ap-
plies the dropout principle to input context tokens instead
of model parameters. Furthermore, it is applied to regular-
ize the inference process instead of training, by introduc-
ing randomness in decoding contexts to reduce overfitting
to noisy visual tokens.

1We specifically refer to the tokens that are already in the input prompt
to the text decoder. Concrete definition is in §3.1.
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Our method measures the uncertainty of each visual to-
ken by projecting it into the text token space through the text
decoder directly, and decomposing this uncertainty into two
components: aleatoric (data-related) and epistemic (model-
related) [20, 43, 50]. By focusing on epistemic uncertainty,
which reflects the model’s lack of knowledge, we identify
visual tokens with high uncertainty and selectively target
them for suppression. At inference time, we adjust the vi-
sual inputs by selectively suppressing tokens with high epis-
temic uncertainty. Specifically, we create an ensemble of
predictions by generating multiple subsets of visual inputs,
each with different combinations of high-uncertainty tokens
dropped out. These subsets are processed independently,
and their corresponding outputs are aggregated using ma-
jority voting to produce the final prediction.

This approach, which we term DROPOUT DECODING,
enhances the reliability and accuracy of LVLM outputs
without modifying the underlying model parameters or re-
quiring additional training. By leveraging uncertainty quan-
tification and token dropout, DROPOUT DECODING ro-
bustly mitigates errors arising from uncertain visual token
interpretations. Experiments are conducted on LVLM de-
coding benchmarks including CHAIR [41], THRONE [23],
and MMBench [36], demonstrating the effectiveness of our
approach in both reducing object hallucinations (OH) and
improving reliability of model outputs consistently across
diverse visual contexts. With DROPOUT DECODING, we
make the following contributions:
• We introduce a novel approach that quantifies and decom-

poses uncertainty on tokens in the visual inputs at infer-
ence time without additional supervision, by projecting
visual input tokens onto text token interpretations.

• We propose a decoding strategy that uses epistemic un-
certainty measurements to guide the selective dropout of
high-uncertainty visual tokens in the context, analogous
to performing dropout on the model but applied to the in-
put tokens and during inference.

• Comprehensive experiments are conducted on various
benchmarks, showing significant reductions in OH and
improved fidelity in pre-trained LVLMs without addi-
tional fine-tuning.

2. Related Work
Reliable generation. Reliable generation in LLMs is of-
ten challenged by hallucinations, where the model generates
irrelevant or factually incorrect information [18, 48, 64].
These hallucinations stem from issues in data, training, and
inference stages [53], with attention mechanisms exacerbat-
ing the problem as sequence lengths grow [8]. To mitigate
these, methods like factual-nucleus sampling have been pro-
posed to balance output diversity and accuracy [26]. Be-
sides, while Arias et al. [2] leverage quantified uncertainty
to guide the decoding process for LLM, our method differs

significantly. We quantify uncertainty at the level of visual
input context rather than of model ensemble which is heavy.

OH in LVLMs. OH is a common issue in LVLMs, where
models generate descriptions containing objects, attributes,
or relationships not present in the actual image. The CHAIR
metric [41] is widely used to evaluate OH, measuring the
hallucination rate on the MSCOCO dataset [31]. Another
benchmark, POPE [30], treats object hallucination as a bi-
nary classification task. More recently, THRONE [23] takes
a more holistic approach, using open-ended, object-based
image descriptions for evaluation. In our work, we use
CHAIR and THRONE to assess OH.
OH reduction. Recent methods addressing OH in LVLMs
include internal signal guidance, contrastive decoding, and
selective information focusing, all of which are inference-
time strategies. OPERA [19] uses internal signals like at-
tention patterns to refine outputs and improve alignment
with visual content. Contrastive decoding methods, like
VCD [27], enhance coherence by comparing image-specific
outputs. Selective information focusing approaches, such
as HALC [4], prioritize key image regions, while CDG [10]
uses CLIP embeddings to align generation with visual in-
put. In contrast, DROPOUT DECODING works with any
LVLM by 1) selecting visual information from visual to-
kens during generation, unlike HALC which selects regions
initially; 2) using uncertainty to guide visual information
selection, requiring no external models, unlike HALC and
CDG; 3) introducing a token-level majority voting strategy.

3. Preliminaries
3.1. Vision-Language Model Decoding

Widely adopted LVLM architectures [28, 32, 33] typically
include a vision encoder, a vision-text interface module, and
a Transformer-based LLM decoder. As we mostly focus
on the decoder side inference optimization, we assume the
LLM decoder is with parameter θ.

The visual input, such as an image, is segmented into
patches and processed by the vision encoder,2 followed by
the vision-text interface module, to produce a sequence of
visual tokens xv = (xv

1, x
v
2, . . . , x

v
N ). Each token xv

i is a
contextualized embedding of an image patch, serving as the
direct input to the text decoder. The text input such as a
query or instruction is xt = (xt

1, x
t
2, . . . , x

t
M ). The input

to the text decoder is denoted as x = [xv, xt], which is the
concatenation of visual and text tokens. At this point, the
visual and text tokens are aligned and serve as a sequential
input to the LLM decoder.

During autoregressive decoding, the decoder generates
output text tokens y = (y1, y2, . . .) as continuation from

2We assume a general Transformer architecture for the vision encoder
as well. Our approach could also apply to other types of vision encoders.
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prompt x, following the conditional probability distribution

hj = fθ(x
v, xt, y<j)

pθ(yj | xv, xt, y<j) = softmax(WVhj)
(1)

where y<j = (y1, . . . , yj−1) is the sequence of previously
generated tokens, fθ denotes the LLM forward pass to pro-
duce hidden states hj ∈ Rd on top of the Transformer lay-
ers, WV ∈ R|V|×d is the output projection matrix onto the
text vocabulary V , and yj ∈ V the output token at j-th step.

3.2. Uncertainty Quantification

Our approach quantifies the information uncertainty of vi-
sual tokens used for decoding by adapting the concept of
epistemic uncertainty for measurement, as detailed in §5,
and drawing inspiration from classical uncertainty decom-
position [20, 43, 44]. To provide the necessary background,
we first introduce the concept of uncertainty decomposition.

Uncertainty decomposition separates the total uncer-
tainty of a model’s prediction into two components:
aleatoric uncertainty, which is inherent to the data, and
epistemic uncertainty, which relates to the model’s lack of
knowledge. The Bayesian framework offers a principled
way to quantify uncertainty about some candidate model
with weights w, through the posterior estimation over the
hypothesis space for a given dataset D. The Bayesian model
average (BMA) predictive distribution is defined as3

p(y | x,D) =

∫
w

p(y | x,w)p(w | D) dw. (2)

The total information uncertainty is measured by the en-
tropy of BMA: H[p(y | x,D)], which equals the posterior
expectation of the cross-entropy between the predictive dis-
tribution of the candidate model and the BMA distribution:

H[p(y | x,D)]︸ ︷︷ ︸
Total Uncertainty

= Ep(w|D) [CE[p(y | x,w), p(y | x,D)]]

= Ep(w|D) [H(p(y | x,w))]︸ ︷︷ ︸
Aleatoric Uncertainty

+ Ep(w|D) [DKL(p(y | x,w) ∥ p(y | x,D))]︸ ︷︷ ︸
Epistemic Uncertainty

The epistemic uncertainty, expressed as the KL divergence
between candidate models’ predictive distributions and the
BMA, has proven effective in various applications [3, 13,
38, 65]. Our approach, adopts a similar formulation for un-
certainty quantification, calculating the KL divergence be-
tween candidate prediction distributions on individual vi-
sual tokens and an aggregated average distribution.

3p(y | x,w,D) = p(y | x,w) because of conditional independence.

4. Textual Interpretation of Visual Tokens

As discussed in §1, identifying the visual tokens that carry
significant information and quantifying their uncertainty is
critical for improving the reliability of LVLMs. To address
this, we propose a supervision-free, scalable approach that
maps visual tokens to the text token space, effectively trans-
lating visual content into an interpretable text-based repre-
sentation. This mapping acts as a heuristic for understand-
ing visual tokens, leveraging the LVLM’s inherent ability to
align visual and textual contexts.
Text-space projection of visual tokens. While LVLMs are
trained to generate text only after processing all visual to-
kens xv and text instruction tokens xt, the hidden represen-
tations h on top of the text decoder layers inherently capture
textual semantics. This is due to their proximity to the text
vocabulary projection, even at visual token positions where
the model is not explicitly trained to generate text.

Building on this intuition, we adopt a heuristic approach
to interpret visual tokens by projecting them onto the text
vocabulary at the top Transformer layers. In particular, for
each visual token xv

i at position i,4 we obtain its textual
projected distribution over the vocabulary V from the last
layer of the LLM decoder in the LVLM as:

hv
i = fθ(x

v
≤i)

qproj
i = pθ(· | xv

≤i) = softmax(WVh
v
i )

(3)

where hv
i is the LLM decoder top-layer hidden representa-

tion aligned at the i-th visual token positions, xv
≤i denotes

the visual tokens up until index i.5

Here, qproj
i , which we refer to as visual-textual distribu-

tion, represents the projection of the visual input onto the
text space. It encapsulates the model’s interpretation of
the i-th visual token. This projection offers a text-based
summarization, akin to an unordered caption or a “bag-of-
words” representation of the visual content. As we will
demonstrate in §6, this heuristic method serves as an ef-
fective proxy for uncertainty estimation.
An illustrative example with projection uncertainty. To
illustrate the effectiveness of this projection method and
motivate our approach, consider the example shown in
Fig. 1. The image is processed into patches, and for five
selected patches, we compute their corresponding distribu-
tion over the text space. Then we obtain the top-5 predicted
text tokens for each.

Some patches produce specific and informative text to-
kens, often corresponding to meaningful visual content like
“Berlin,” “computer,” or “map.” These tokens are relatively

4Note that i indexes are only used over visual tokens xv , not text tokens
xt or generations y.

5For the models we use, the visual tokens xv are all placed before the
text tokens xt in the concatenated sequence x, so xv

≤i are purely visual
tokens. But our approach also applies to other cases.
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laptop
computer
Mac
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cover
Berlin
alay
book
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Top-5 Projected Text Tokens From LLM Decoder

avg

avg

avg

Figure 1. An illustrative example where visual tokens are pro-
jected into the text space. We show 5 image patches and their
corresponding top-5 projected text tokens. Words in bold indicate
high information content. Red text highlights projections that are
evidently misaligned with the image content. This demonstrates
that the visual tokens sometimes cannot perfectly capture the im-
age’s information, which motivates the token dropout (§5.2). We
also show the uncertainty values quantified on top (dotted lines are
average among all visual tokens for reference). High epistemic
uncertainty correlates well with high information in visual tokens,
whereas aleatoric and total uncertainty do not.

closer to the long tail in vocabulary, indicating that the
corresponding visual tokens capture unique and informa-
tive visual context. In contrast, patches resulting in com-
mon words carry less specific information, because high-
frequency words (e.g. “a,” “the,” or “on”) contribute less to
the uniqueness of the visual content. This observation sug-
gests that the projected text tokens can serve as a proxy for
the information content of the visual tokens.

Building on these insights, we introduce uncertainty
measures derived from textual projective distributions qproj

i ,
which we use in our method to quantify the uncertainty
associated with each visual token, as shown at the top
of Fig. 1. Specifically, inspired by §3.2, we decom-
pose the total uncertainty into two components: aleatoric
(data-related), calculated directly from qproj

i , and epistemic
(model-related), obtained by comparing qproj

i to an average
distribution. Detailed definitions are in §5.1.

As shown in Fig. 1, the epistemic uncertainty accurately
reflects the information content of the visual tokens: vi-
sual tokens with high epistemic uncertainty correspond to
patches with significant information (e.g., “Berlin”), while

those with low epistemic uncertainty correspond to less in-
formative patches (e.g., “the”). In contrast, the aleatoric
and the total uncertainty do not correlate well. This finding
motivates our focus on epistemic uncertainty as a reliable
indicator of the significance of visual information.

5. Method
We propose DROPOUT DECODING, which leverages vi-
sual uncertainty to selectively drop out visual tokens and
guide decoding. As shown in Fig. 2 and Algorithm 1, our
approach comprises two stages: uncertainty quantification
(§5.1) before decoding and uncertainty-guided token gener-
ation (§5.2) for decoding.

5.1. Uncertainty Quantification Before Decoding

Average visual-textual distribution. We begin by defining
the averaged distribution qproj, which represents the overall
projection of the entire visual input (e.g. an image) into
the text space. Using the projected distribution defined in
Eq. (3), we define the average projection distribution over
all visual tokens as:

qproj = Ei[q
proj
i ] =

1

N

N∑
i

qproj
i (4)

where qproj
i represents the text-space projection of the i-th

visual token, and N is the total number of visual tokens.
Note that the subscript i indicates different distributions
rather than elements within a single distribution. This pro-
vides us with a “baseline” representation of the visual in-
put, against which we can quantify the surprisal of a spe-
cific visual token. This idea is grounded in classical uncer-
tainty decomposition where a Bayesian average distribution
is needed to quantify epistemic uncertainty [20, 43].
Uncertainty measurement for visual tokens. We aim to
quantify the uncertainty associated with each visual token at
inference time. To distinguish from those uncertainty terms
in classical settings as introduced in §3.2, we refer to ours
as perception uncertainty. We start by quantifying the per-
ception total uncertainty of the visual input as the entropy
of the average visual-textual distribution H

[
qproj

]
. Then, to

attribute this total uncertainty to individual visual tokens,
we decompose it (more details in Appendix A) as follows:

Utotal = H
[
qproj] = Ei

[
CE
(
qproj
i , qproj

)]
(5)

Further decomposing the cross-entropy (CE), the percep-
tion total uncertainty can be expressed as:

Utotal = Ei

[
H
[
qproj
i

]
+DKL

(
qproj
i ∥ qproj

)]
= Ei [Uale(i) + Uepi(i)]

Here we have the perception aleatoric uncertainty of the
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…In addition to the book, 
there is a laptop and a
mouse on the desk…

Original Generation
(Hallucination on “mouse”)
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User: Describe the image. Assistant: 𝑦!	, 𝑦#	, … , 𝑦$%!	
Text Inputs & Previous Generation

LVLM

Forward with only visual input

Retain relevant
tokens

Visual Inputs

LVLM

Figure 2. An overview of our DROPOUT DECODING. The method includes uncertainty measurement of visual tokens (under “Before De-
coding”) and uncertainty-guided visual context dropout decoding algorithm (under “Decoding Time”). The pseudocode is in Algorithm 1.

i-th visual token Uale(i) = H
[
qproj
i

]
, capturing the inher-

ent noise or ambiguity of the i-th token, and the perception
epistemic uncertainty—

Uepi(i) = DKL

(
qproj
i ∥ qproj

)
(6)

quantifying the divergence between the visual token’s tex-
tual projection and the overall projection. It indicates how
much the model’s belief about this token differs from its
belief about the entire visual input. A higher Uepi(i) sug-
gests that the i-th visual token conveys information that is
surprising or not well-represented in the overall visual con-
tent, which can be critical for identifying tokens that might
introduce uncertainty in the decoding process.

5.2. Uncertainty-Guided Decoding

During the text decoding process, we leverage the computed
uncertainty measures to guide the generation of each token.
Our method involves two main steps for each generated
text token: (1) identifying relevant visual tokens (optional),
and (2) performing token dropout with uncertainty-guided
masking. The first step is optional, designed to enhance de-
coding by retaining more relevant visual tokens.
Identifying relevant visual tokens (optional). We selec-
tively retain only the most relevant visual tokens from the
context, which are excluded for dropout. To do this, when
generating each output text token, yj , we first perform a pre-
liminary forward pass to generate an initial prediction token
yinit
j :

yinit
j ∼ pθ(· | xv, xt, y<j) (7)

Next, we determine the set of visual tokens that are rele-
vant to this initial prediction. Specifically, a visual token xv

i

is considered relevant if the initial prediction yinit
j appears

among the top-k tokens of its visual-textual projection qproj
i .

Formally, the set of relevant visual tokens for the j-th gen-
eration is:

Sj =

{
xv
i

∣∣∣∣ yinit
j ∈ TopK(qproj

i )

}
(8)

where TopK(·) denotes the function returning the top-k en-
tries of a given distribution.

To illustrate the intuition behind this step, consider an
image depicting a cat. Suppose the model correctly predicts
the token “cat” during the preliminary forward pass. In that
case we retain the visual tokens associated with “cat” and
drop out among the remaining visual content. Conversely,
if the model incorrectly predicts “dog” or unrelated tokens
irrelevant to an object, these predictions will not align with
the top text projections of any qproj

i if the visual interpre-
tation is accurate. In such cases, no visual tokens are re-
tained due to a lack of clear relevance, and dropout is ap-
plied across the entire visual context as the best alternative.

It is worth noting that this step is optional. Omitting it
can improve efficiency by reducing the computational over-
head of the preliminary forward pass. As shown by the ab-
lation studies in §7, while skipping this step may lower per-
formance on certain benchmarks like THRONE [23], it still
achieves comparable results on others such as CHAIR [41].
Visual token dropout with uncertainty guidance. Us-
ing the epistemic uncertainty measurements Uepi(i) from
Eq. (6), we introduce dropout masks over visual tokens.
As illustrated in Fig. 1, the projected visual-textual distri-
butions sometimes misalign with the image content, and
regions of high information can lead to substantial errors,
resulting in hallucinations. Building on this intuition, we
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selectively target visual tokens with high epistemic uncer-
tainties for dropout.

Specifically, we formulate a controllable series of sample
distributions for visual token dropout based on Uepi(i), for
each visual position i:

P
(k)
dropout(x

v
i ) = γ(k)

(
Uepi(i)− Umin

epi

Umax
epi − Umin

epi

)
+ δ(k) (9)

where Umin
epi , Umax

epi are the minimum and maximum epis-
temic uncertainty values across all visual tokens, and γ(k)

and δ(k) are hyperparameters controlling the probability
range of the dropout. By adjusting the values of γ(k) and
δ(k), we can modulate the intensity of visual token dropout.

With the dropout distributions, we can sample dropout
masks for each visual token independently. Denote the
binary mask as M (k) ∈ {0, 1}N , consisting of a binary
indicator M

(k)
i for each visual token xv

i , where the con-
rresponding visual token is retained if M

(k)
i = 1, and

dropped if M (k)
i = 0. The dropout mask sampling follows

P (M
(k)
i = 0) = P

(k)
dropout(x

v
i ), and the sampling is done for

each visual token position independently. A higher value of
Pdropout(x

v
i ) indicates that xv

i is more likely to be dropped
out. If we performed the optional preliminary forward pass
to identify relevant visual token set Sj , these visual tokens
are never dropped, i.e., ∀xv

i ∈ Sj , set M (k)
i = 1 directly.

Ensemble-based reliable generation. Our inference-time
context dropout introduces stochasticity, so we employ an
ensemble decoding approach by independently sampling K
distinct dropout masks, {M (k)}Kk=1, to enhance generation
quality. Since the masks are independent, the text genera-
tive distribution from K masks can be efficiently computed
in a parallel forward pass

y
(k)
j

Decoding∼ pθ(· | xv
/M(k) , x

t, y<j) (10)

where xv
/M(k) denotes the visual tokens after applying

dropout mask M (k), and
Decoding∼ denotes invariance to the

decoding algorithm used (e.g., greedy search in our imple-
mentation, though others are applicable).

Each y
(k)
j serves as a candidate prediction for the next

text token, with the final token yj selected via majority
voting among the K masked inputs. In case of a tie, we
choose the prediction from the forward pass with the fewest
dropped tokens, as it retains the most information and is
deemed more reliable. By forming an ensemble of predic-
tions derived from various subsets of the visual input, en-
abled through token dropout, we diversify the model’s per-
spective on the visual content. This diversity mitigates the
impact of any single misinterpretation, ultimately leading to
more reliable and robust generation, which is also observed
in other ensemble-based methods [4, 12, 14, 25, 42].

Algorithm 1 Pseudocode of DROPOUT DECODING.

1: Input: visual tokens xv , Text tokens xt, Number of
dropout masks K, Generation length L

2: Output: Generated sequence y
3:
4: Before Decoding:
5: Obtain visual text projecting distributions qproj

i . ▷ Eq (3)
6: Compute average distribution qproj. ▷ Eq. (4)
7: Compute epistemic uncertainty Uepi(i). ▷ Eq. (6)
8: for j = 1 to L do
9: Identifying relevant visual tokens (optional):

10: Generate preliminary token yinit
j . ▷ Eq. (7)

11: Get relevant tokens Sj with yinit
j and qproj

i . ▷ Eq. (8)
12:
13: Visual token dropout with uncertainty-guidance:
14: Get K dropout prob P (k) with Uepi(i). ▷ Eq. (9)
15: Generate K dropout masks M (k) based on P (k)

while retain relevant tokens Sj .
16: Forward candidates y

(k)
j with masks M (k).

▷ Eq. (10)
17: Majority voting on y

(k)
j and get yj .

18: end for
19: Return Generated sequence y

6. Experiments
We evaluate the proposed DROPOUT DECODING from two
aspects: OH reduction and overall generation quality. For
OH, we use the CHAIR [41] and THRONE [23] metrics
to assess the performance of different decoding methods
on the MSCOCO dataset. Additionally, we employ MM-
Bench [36] to evaluate the overall generation quality and
general ability of these methods.

6.1. Experimental Setup

Base LVLMs. We evaluate all methods on three repre-
sentative LVLMs: LLaVA-1.5 [32], InstructBLIP [9] and
LLaVA-NEXT [34]. LLaVA-1.5 employs linear projec-
tion layers to align image and text features, generating
576 visual tokens for detailed visual representation, while
LLaVA-NEXT extends this approach by utilizing thousands
of visual tokens. In contrast, InstructBLIP uses a Q-former
with only 32 visual tokens to bridge the modalities. This di-
versity highlights the flexibility of our approach, validating
its effectiveness across models with both high and low token
counts, and confirming its robustness and adaptability.
Hallucination reduction baselines. In addition to the orig-
inal LVLM outputs, we compare our method with beam
search as well as two state-of-the-art decoding methods:
VCD [27], which contrasts original and distorted visuals
to reduce hallucinations, and OPERA [19], which applies
penalties and token adjustments for better grounding.
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Model Method CHAIR THRONE

CHAIRS ↓ CHAIRI ↓ F 1
all↑ F 0.5

all ↑ Pall↑ Rall↑

LLaVA-1.5

Greedy 42.20±2.86 12.83±0.36 0.795±0.006 0.784±0.009 0.772±0.015 0.847±0.010

Beam Search 46.33±1.10 13.9±0.60 0.790±0.007 0.772±0.004 0.759±0.003 0.862±0.009

OPERA 41.47±0.92 12.37±0.72 0.802±0.003 0.791±0.004 0.782±0.009 0.854±0.011

VCD 49.20±0.88 14.87±0.47 0.786±0.012 0.771±0.017 0.759±0.020 0.854±0.015

DROPOUT DECODING 39.80±2.3 11.73±0.25 0.804±0.002 0.796±0.006 0.790±0.009 0.851±0.005

DROPOUT DECODING (w/o prelim) 39.73±2.15 12.20±0.70 0.799±0.002 0.794±0.004 0.791±0.007 0.843±0.005

InstructBLIP

Greedy 27.87±1.32 7.90±0.63 0.809±0.001 0.826±0.003 0.832±0.006 0.803±0.007

Beam Search 25.87±2.77 6.93±0.569 0.809±0.002 0.827±0.006 0.836±0.005 0.807±0.015

OPERA 28.07±1.75 8.23±0.53 0.805±0.004 0.824±0.003 0.830±0.004 0.798±0.008

VCD 39.33±2.70 19.10±0.30 0.737±0.008 0.746±0.012 0.751±0.020 0.757±0.007

DROPOUT DECODING 24.53±1.26 6.63±0.65 0.814±0.008 0.833±0.004 0.838±0.002 0.808±0.016

DROPOUT DECODING (w/o prelim) 26.2±2.40 7.10±0.854 0.807±0.008 0.823±0.006 0.827±0.010 0.804±0.010

LLaVA-NEXT

Greedy 28.80±2.12 8.10±0.92 0.815±0.012 0.832±0.009 0.830±0.007 0.799±0.008

Beam Search 28.06±1.30 7.10±0.20 0.816±0.007 0.834±0.006 0.834±0.004 0.801±0.002

OPERA 29.06±1.89 8.06±1.07 0.814±0.011 0.832±0.011 0.831±0.006 0.799±0.007

VCD 33.19±0.52 8.10±0.91 0.818±0.004 0.822±0.003 0.808±0.005 0.822±0.003

DROPOUT DECODING 26.26±2.4 7.39±0.69 0.821±0.010 0.840±0.009 0.842±0.002 0.805±0.010

DROPOUT DECODING (w/o prelim) 27.0±1,80 7.53±0.643 0.814±0.009 0.835±0.007 0.837±0.003 0.793±0.008

Table 1. Comparison of methods on CHAIRS , CHAIRI , F 1
all, F

0.5
all , Pall, and Rall metrics for LLaVA-1.5, InstructBLIP, and LLaVA-NEXT.

6.2. CHAIR

CHAIR [41] is a benchmark designed to evaluate OH in
image captioning situations. CHAIR provides two primary
metrics to measure hallucination at different granularities:
sentence-level and object-level. The sentence-level metric,
CHAIRS , calculates the proportion of captions that contain
any hallucinated objects, giving an overall measure of hallu-
cination frequency in captions. And the object-level metric,
CHAIRI , calculates the proportion of hallucinated objects
out of all mentioned objects across captions, reflecting the
prevalence of hallucination among the objects described.
Results. As shown in Table 1, DROPOUT DECODING con-
sistently outperforms baseline approaches across various
models, demonstrating its reliability and effectiveness in
image captioning. Especially, on InstructBLIP, CHAIRI

is improved by approximately 16% over the second-best
method, and CHAIRS sees a gain of around 12%. These
substantial improvements underscore the effectiveness of
our approach, which aligns well with intuitive expectations
that token dropout will reduce generated objects. Further-
more, DROPOUT DECODING reduces the generation of hal-
lucinated objects without compromising the inclusion of
relevant objects. This reduction in hallucinated content, as
opposed to accurate content, is further validated by the re-
call metric (Rall) in THRONE.

6.3. THRONE

THRONE [23] assesses hallucinations in LVLM-generated
responses, covering both “Type I” (mentions of non-existent
objects, like CHAIR) and “Type II” (accuracy of object ex-

istence, like POPE [30]). It uses Pall (Precision), Rall (Re-
call), F 1

all, and F 0.5
all . Additionally, it employs Fβ , which

combines Pall and Rall, with the parameter β controlling the
weight of Rall relative to Pall: F

β
all = (1+β2)· Pall×Rall

(β2×Pall)+Rall
.

Results. The test results in Table 1 illustrate that DROPOUT
DECODING surpasses nearly all baseline methods across
various metrics, highlighting its effectiveness in reduc-
ing both Type I and Type II hallucinations. Specifically,
DROPOUT DECODING demonstrates notable strengths in
InstructBLIP, excelling in the Pall metric and achieving the
highest performance in Rall. Across models, Pall metric
achieves larger improvement while the Rall score also ex-
ceeds that of the Greedy method, confirming that retaining
overlap tokens effectively preserves relevant objects. The
large increase in F 0.5

all further shows its comprehensiveness.

6.4. MMBench

MMBench [36] is a comprehensive benchmark designed to
evaluate the multimodal capabilities of LVLMs across vari-
ous tasks and data types, including image captioning, ques-
tion answering, and object recognition. It provides a holistic
view of a model’s strengths and weaknesses in multimodal
understanding. Since the prompt length limits in MMBench
exceed InstructBLIP’s token allowance, we report results
only on LLaVA-1.5 and LLaVA-NEXT.
Results. As shown in Table 2, DROPOUT DECODING
outperforms all the other baselines on LLaVA-1.5, which
demonstrates not only its effectiveness in hallucination mit-
igation but also its robustness and adaptability across a
broader range of multimodal tasks.
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Figure 3. Comparison of CHAIRS , CHAIRI , Pall and Rall scores with standard deviations across different candidate numbers.

Method Original VCD OPERA DROPOUT DECODING

LLaVA-1.5 71.86 72.35 73.86 74.01
LLaVA-NEXT 74.57 69.65 74.54 74.31

Table 2. Results of different methods on MMBench.

7. Analysis and Ablation Studies
7.1. Number of Parallel Dropouts

As described in §5.2, we generate K candidate predictions
by applying token dropout with different dropout masks
M (k). In this section, we investigate how varying K from 1
to 4 affects generation quality.

We fix δ(k) = 0.1 and adjust γ(k) based on a predefined
order: γ(1) = 0.3, γ(2) = 0.5, and γ(3) = 0.7. However,
setting γ(k) to 0.9 leads to excessive dropout of visual to-
kens and degrades InstructBLIP’s performance, so we set
γ(4) = 0.1. Moreover, our majority voting algorithm fa-
vors candidates with fewer dropped tokens in the event of
a tie, meaning that when comparing only two candidates,
both will yield identical outputs. To address this, we remove
Candidate 1 in the second round, leaving only Candidate 2.

As shown in Fig. 3 (a) and (b), both CHAIRS and
CHAIRI scores peak at K = 3 for LLaVA-1.5 and In-
structBLIP. Increasing K to 4 introduces a less-masked
candidate that slightly negatively impact our method’s ef-
fectiveness in reducing hallucinations. Conversely, using
fewer candidates (e.g., only Candidate 1 and Candidate 2)
lacks the balance needed for stable voting outcomes, re-
sulting in increased randomness. Similarly, Fig. 3 (c) and
(d) shows that THRONE’s Rall and Pall metrics also per-
form best at K = 3. Overall, we find that selecting three
candidates strikes the optimal balance between increased
certainty from additional votes and the controlled uncer-
tainty introduced by candidate dropout probability, allow-
ing DROPOUT DECODING to achieve more trustworthy and
stable generation results.

7.2. Initial Identification of Relevant Visual Tokens

As discussed in §5.2, DROPOUT DECODING may employ
a preliminary forward pass to retain most relevant objects
during generation, which helps reduce hallucinated objects

while maintaining high-quality outputs. In contrast, bypass-
ing this step risks masking relevant visual tokens during the
token dropout phase, potentially degrading overall perfor-
mance. However, incorporating a preliminary forward pass
roughly doubles the computational cost per generation. To
strike a balance between accuracy and efficiency, we eval-
uate the approach both with and without this step. Specif-
ically, our goals are: 1) to confirm the effectiveness of the
preliminary forward pass, and 2) to explore a more efficient
alternative when computational resources are limited.

As shown in Table 1, including the preliminary forward
pass consistently improves most metrics, with particular no-
table gains in the Fall score on THRONE. We also observe
further improvements in CHAIR metrics, especially when
using InstructBLIP. Interestingly, for LLaVA-1.5, the vari-
ant without the preliminary pass performs slightly better on
CHAIR, though the THRONE performance remains stable
(i.e., the version with the preliminary pass still performs
better). We hypothesize that this discrepancy arises from
differences in the abundance of visual tokens. LLaVA-1.5
uses 576 visual tokens, each carrying relatively less weight,
whereas InstructBLIP relies on just 32, making each token’s
contribution more critical. Consequently, omitting the pre-
liminary forward pass in InstructBLIP risks losing critical
information, lowering performance. These findings suggest
that while a preliminary forward pass is highly beneficial
for models with abundant visual tokens, models with fewer
tokens may achieve better computational efficiency and per-
formance by skipping this additional step.

8. Conclusion
We introduce DROPOUT DECODING, a novel uncertainty-
guided context selective decoding approach aimed at en-
hancing the reliability of LVLMs. After quantifying the
uncertainty in visual inputs, DROPOUT DECODING accord-
ingly drops out visual tokens to regularize effect of informa-
tion uncertainty, and employs an ensemble-based decoding
approach to stabilize generation. Extensive experiments on
benchmarks including CHAIR, THRONE, and MMBench
validate the effectiveness, demonstrating consistent perfor-
mance improvements over existing methods in both halluci-
nation reduction and general multimodal capability tasks.
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A. Details of Uncertainty Decomposition
A detailed derivation of Eq. (5):

Utotal = H
[
qproj]

= −
∑
y∈V

qproj(y) log qproj(y)

= −
∑
y∈V

(
Ei

[
qproj
i (y)

])
log qproj(y)

= Ei

−∑
y∈V

qproj
i (y) log qproj(y)


= Ei

[
CE
(
qproj
i , qproj

)]
(11)

= Ei

[
H
[
qproj
i

]
+DKL

(
qproj
i ∥ qproj

)]
= Ei [Uale(i) + Uepi(i)]

B. Implementation Details
The experimental setup of DROPOUT DECODING is shown in Table 3. We set the maximum new tokens to 512 to ensure
the complete generation of models, therefore achieving more reliable results from CHAIR and THRONE. In MMBench, as
all questions are single-choice questions, we set the maximum new tokens to 1 for a more precise evaluation. We set other
parameters in generation to greedy for more stable and repeatable results.

Parameters CHAIR THRONE MMBench

512 512 1
Top-k False
Top-p 1
Temperature τ 1
Number Beams 1

Table 3. Parameter settings used in our experiments.

In addition to general generation settings, DROPOUT DECODING includes hyperparameters specified in §5.2. The details
of these hyperparameter settings are provided below:

Top-k in identifying relevant visual tokens. Before the decoding process, we first obtain qproj, which is then used in the
decoding process for generating the relevant visual tokens. The higher the top-k is, the more visual tokens are expected to
be kept during the decoding process. In LLaVA-1.5, we set k = 5, and in InstructBLIP, we set k = 10. The difference of
k between LLaVA-1.5 and InstructBLIP derives from the informative level of each visual token, where in LLaVA-1.5, each
visual token carries less information than in InstructBLIP, which only contains 32 visual tokens.

Number of mask K. K refers to the number of predictions that will join the majority vote progress. We set K = 3 in our
experiment settings.

γ(k) and δ(k) in uncertainty-guided masking We set δ(k) = 0.1, γ(k) = 0.2 ∗ k + 1; k = 1, 2, ...,K;K = 3 in our
experiment settings.

Moreover, we provide the hyperparameter settings of our baselines. OPERA’s hyperparameters can be referred to Table 4;
VCD’s hyperparameters can be referred to Table 5.
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Parameters Value

Self-attention Weights Scale Factor θ 50
Attending Retrospection Threshold 15
Beam Size 3
Penalty Weights 1

Table 4. OPERA hyperparameter settings.

Parameters Value

Amplification Factor α 1
Adaptive Plausibility Threshold 0.1
Diffusion Noise Step 500

Table 5. VCD hyperparameter settings.

C. Further Discussion on Ablation Studies
To further validate our uncertainty guidance’ effectiveness, we select random masking strategy as an additional baseline to
compare with DROPOUT DECODING’s uncertainty-guided masking. The experimental setup remains identical, except that
tokens are masked randomly, that is, candidate k masks each vision token at γ(k) instead of using uncertainty guidance. The
generated results using the random masking strategy often suffer from issues, with models producing repeated tokens until
reaching the maximum token limit. For instance, the model might repeatedly generate “skiers” hundreds of times (generation:
“The image shows shows a a snowy snowy slope with a skiers skiers skiers skiers ...”); this occurred in approximately 20–25
out of 500 cases, an issue nearly never encountered with our method. This behavior likely stems from random masking
disrupting essential context information within LVLMs. In contrast, our uncertainty-guided masking applies a lower masking
rate to tokens that the LVLMs are less “surprised” by and a higher rate to tokens that elicit greater surprise. This allows the
model to generate content in a rather “expected” manner, even though many informative vision tokens are masked. By
preserving base context information, our approach effectively maintains the LVLMs’ consistency and coherence.
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D. Generation Examples and Analysis

D.1. LLaVA-1.5 Examples

Generated Caption:

Greedy Generated caption:

The image features a black and white photograph of a small boat with three
people rowing it down a river. The boat is being pulled by the people, and
there are two swans swimming alongside the boat. The swans are swimming
in the water near the boat, creating a peaceful and serene scene. The people
in the boat are enjoying the ride, possibly on a leisurely outing.

DROPOUT DECODING Generated caption:

The image features a group of people in a small boat, paddling down a river.
There are at least four people visible in the boat, with some of them sitting
closer to the front and others towards the back. The boat is filled with people,
and they seem to be enjoying their time together on the water.

Generated Caption:

Greedy Generated caption:

The image features a kitchen countertop with a microwave oven and a large,
wrapped object sitting on top of it. The object is wrapped in aluminum foil,
which is covering a large rectangular box or container. The microwave oven
is positioned on the left side of the countertop, and the wrapped object is
placed on the right side. The countertop is also adorned with a few utensils,
such as a spoon and a fork.

DROPOUT DECODING Generated caption:

The image features a kitchen counter with a metal pan or tray sitting on top
of it. The pan is covered in aluminum foil, which is commonly used to keep
food warm or to prevent it from sticking to the pan. The kitchen counter
appears to be a part of a larger countertop, and the scene suggests that the
pan is being prepared for cooking or baking.

Generated Caption:

Greedy Generated caption:

The image features a dining table set with a white plate containing a variety
of food items, including meat, vegetables, and bread. The plate is placed on
a wooden table, and there is a glass of wine next to it. The table is set for a
meal, with a fork and knife placed on the table. The food items on the plate
are arranged in a visually appealing way, making the dish look appetizing.

DROPOUT DECODING Generated caption:

The image features a dining table with a white plate containing a delicious
meal. The plate is topped with a variety of food items, including a piece
of meat, a roll, and a side of vegetables. There are also a couple of carrots
on the plate. In addition to the plate, there is a wine glass placed on the
table, suggesting that the meal is accompanied by a glass of wine. A chair is
positioned near the table, ready for someone to sit and enjoy the meal.
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D.2. InstructBLIP Examples

Generated Caption:

Greedy Generated caption:

The image features a table with a laptop and a plate of food, including a bowl
of salad and a plate of food. The food is arranged on the table, with a fork
and a knife nearby. The laptop is placed on the table, likely used for work or
entertainment. The table is set up for a comfortable dining experience, with
a variety of food options available.

DROPOUT DECODING Generated caption:

The image features a plate of food on the table is aesthetically pleasing and
well-balanced. There is a plate of food, including a salad, and a bowl of
chicken, and a fork. The plate is placed on the table, which is also adorned
with a laptop and a computer. The laptop is placed on the table, and the
computer is positioned to the left of the plate.

Generated Caption:

Greedy Generated caption:

The image features a red fire hydrant placed in front of a stone wall. The
fire hydrant is positioned in the middle of the scene, with a window above
it. There are two benches placed near the fire hydrant, one on the left and
another on the right side of the image. The benches are positioned close to
the fire hydrant, with one closer to the window and the other further away.

DROPOUT DECODING Generated caption:

The image features a red fire hydrant is placed in front of a stone building,
with a window above it. The window is located on the second floor of the
building, and the fire hydrant is positioned in front of the window. There
are two metal bars on either side of the fire hydrant, which are likely used to
secure the hydrant in place. The overall scene is quite unique, with the fire
hydrant and the window creating a distinctive composition.

Generated Caption:

Greedy Generated caption:

The image features a dining table with a white plate topped with a slice of
pie, a spoon, and a cherry on top. The pie is surrounded by various utensils,
including a fork, knife, and spoon. There are also two cups on the table,
one on the left and one on the right, each containing a beverage. The dining
table is set with a variety of dishes, including a bowl, a cup, and a spoon.
The scene is set for a delicious meal, with the pie and beverages adding to
the overall ambiance.

DROPOUT DECODING Generated caption:

The image features a dining table is set with a variety of dishes, including a
plate with a slice of pie, a cherry, and a spoon. There are also several cups
of coffee and a bowl of soup. The table is set for a meal, and the dishes are
arranged in a way that suggests a person is about to enjoy their food.
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D.3. LLaVA-NEXT Examples

Generated Caption:

Greedy Generated caption:

In the heart of a bustling pizza shop, a woman stands, her attention capti-
vated by the slice of pizza she holds in her hand. The pizza, with its golden
crust and vibrant toppings, is a tantalizing sight. She’s dressed casually, her
green jacket contrasting with the warm tones of the shop.The shop itself is a
feast for the eyes. A large refrigerator stands in the background, its surface
adorned with various signs and posters. The words ”We guarantee the best
pizza” are prominently displayed, a testament to the shop’s commitment to
quality. ... The scene is a snapshot of everyday life, capturing the simple joy
of enjoying a delicious slice of pizza.

DROPOUT DECODING Generated caption:

In the heart of a bustling pizza shop, a woman stands, her attention capti-
vated by the slice of pizza she holds in her hand. The pizza, with its golden
crust and vibrant toppings, is a tantalizing sight. She’s dressed casually, her
green jacket contrasting with the warm tones of the shop.The shop itself is a
feast for the eyes. Boxes of pizza are neatly stacked on shelves, their white
and red colors standing out against the darker tones of the shop. A sign on
the wall proudly declares ”We guarantee the best pizza in town”, a testament
to the shop’s confidence in its offerings. ... Every object in this image tells a
story - of delicious food, of a lively shop, and of a woman about to enjoy a
slice of pizza.

Generated Caption:

Greedy Generated caption:

The image depicts a cozy indoor setting with a focus on a wooden table. The
table is set with a few items, including a plate of food, a glass of water, and
a small bowl. There are also a couple of utensils, a fork and a knife, placed
on the table. The table is positioned in front of a large window that offers a
view of a patio area with a bamboo fence and a small table. The room has
a warm and inviting atmosphere, with a wooden floor and a beige cushion
visible in the foreground. The lighting suggests it might be daytime. There
are no visible texts or distinctive brands in the image. The style of the image
is a candid, real-life photograph with a focus on the table setting and the
view outside the window.

DROPOUT DECODING Generated caption:

The image depicts a cozy indoor setting with a focus on a wooden table. The
table is set with a few items, including a plate with a small portion of food,
a glass of water, and a pair of chopsticks. There are also a couple of small
bowls and a spoon on the table. The table is positioned in front of a large
window that offers a view of a wooden deck outside. The deck is furnished
with a bench and a small table, and there are bamboo plants and a tree visible
in the background. The room has a warm and inviting atmosphere, with a
wooden floor and a cushion on the floor to the left of the table. The lighting
suggests it might be daytime, and the overall style of the image is natural
and serene.
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D.4. Analysis

In our examples, we use red to denote hallucinations. Specifically, DROPOUT DECODING addresses hallucinations in two
key ways: eliminating non-existent objects and correcting the generation of misidentified objects. For instance, in the third
example of LLaVA-1.5, the Greedy method hallucinates a non-existent object, a knife, whereas DROPOUT DECODING
effectively removes this hallucination. Similarly, in the second example of InstructBLIP, the Greedy method misidentifies
metal bars as benches, but DROPOUT DECODING successfully corrects this, accurately recognizing the metal bars.
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